

The Lifecycle Sustainability Tool

ENVISION-based

TOOL

INTEGRATING SUSTAINABILITY AND LCA

Prof. Dr. S.N. Pollalis

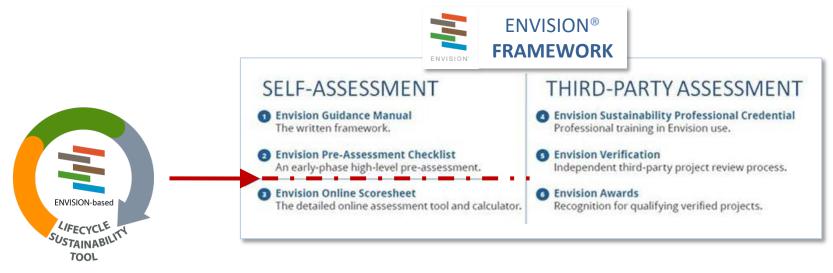
in collaboration with the National Research Council of Canada (NRCC)

February 2022

INTEGRATING SUSTAINABILITY AND LCA PILOT APPLICATION ON TRANSPORTATION INFRASTRUCTURE PROJECTS

NATIONAL RESEARCH COUNCIL OF CANADA (NRCC) PROF. DR. S.N. POLLALIS

22 OCTOBER 2020


The Lifecycle Sustainability Tool

is an **Envision-based tool** that integrates sustainability assessment and lifecycle assessment (LCA) of infrastructure projects.

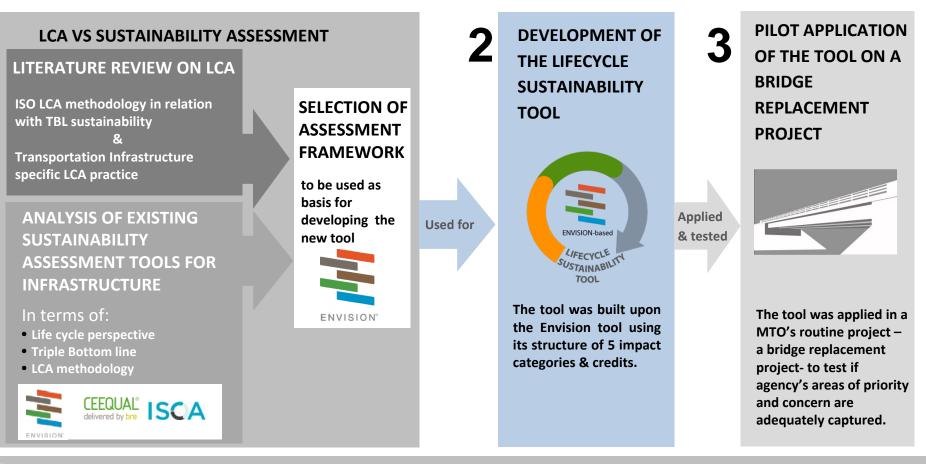
It is the outcome of the 2020 research conducted in collaboration with the National Research Center of Canada (NRCC) and with input from the Ontario Ministry of Transportation (MTO).

The Lifecycle Sustainability Tool

is suggested as an additional tool for self-assessment within the Envision[®] framework to support early design and management decisions in projects.

The research aimed to:

- explore the relation between LCA and Triple bottom line sustainability; and
- develop a new tool that integrates sustainability assessment and lifecycle assessment for transportation infrastructure projects to assist owners, consultants, and contractors in identifying and selecting among sustainable design and management alternatives in early project development


Within the tool project **sustainability is defined** as a balance of social, economic, and environmental trade-offs, considering the project's lifecycle performance and with emphasis on lowering the carbon footprint of projects

Key questions addressed through the research:

- What is the relation between sustainability assessment tools and LCA for infrastructure? (1) Is the full range of sustainability addressed by LCA?
 (2) Do sustainability assessment tools adequately address lifecycle impacts?
- Project teams use both LCA and sustainability assessment tools for relevant projects. Are both assessments needed? Could they be integrated in one tool?
- The development of an integrated LCA-Triple bottom line Sustainability assessment tool, should be based on the LCA methodology or rather the sustainability assessment methodology?

ZOFNASS PROGRAM FOR SUSTAINABLE INFRASTRUCTURE

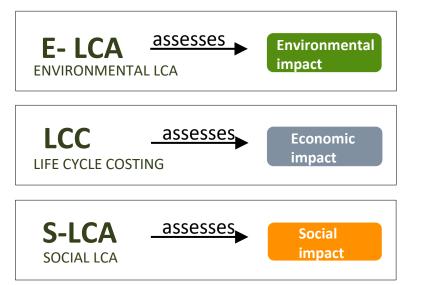
Prof. S.N Pollalis

LCA VS SUSTAINABILITY ASSESSMENT

Prof. S.N Pollalis

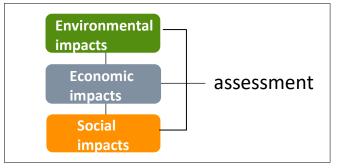
7

The common feature of all the tools studied is the Assessment of Impacts


Both LCA and Sustainability Assessment assess 'IMPACTS'

- 'Impact' refers to the effect a project has on the environment, on the society and the economy. Impacts can be positive or negative, short-term or long-term, intended or unintended, actual or potential.
- Impact (positive or negative) represents a project's contribution to the sustainable development.

Lifecycle Assessment


Assesses **one (or more) specific impacts** depending on the type of LCA:

LC assessment is more detailed, but its comprehensiveness in terms of lifecycle stages depends on the boundary set

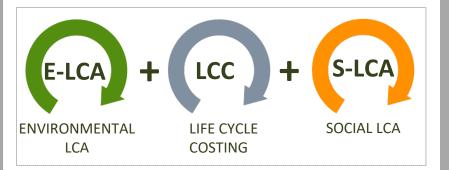
Sustainability Assessment

Assesses a wider range **of pre-defined TBL** impacts:

However, its comprehensiveness in terms of lifecycle stages depends on the tool and is **less detailed than an LCA**.

Moreover, **tools request independent LCA assessments to complete ratings** for certain impacts, such as carbon, energy etc.

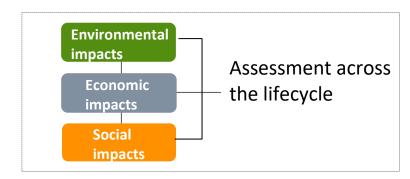
Prof. S.N Pollalis


VS

Regarding the development of an integrated LCA – TBL Sustainability Assessment Tool

VS

Lifecycle Assessment Methodology


According to the LCA methodology, a comprehensive Sustainability Lifecycle assessment is defined as **the conceptual 'equation':**

This would represent triple effort, performing 3 times a complex, highly technical, **labor- and data-intensive process**

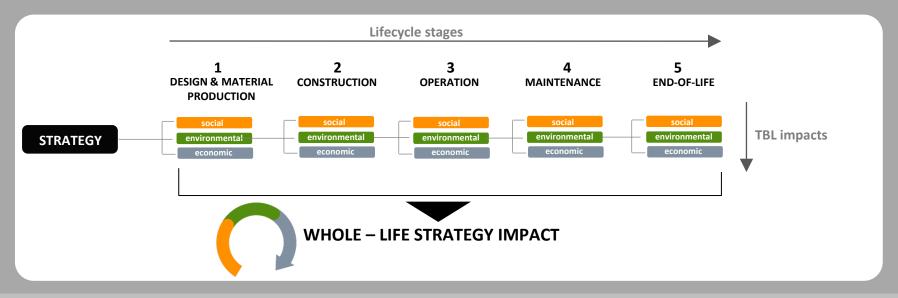
Sustainability Assessment Methodology

In the case of Sustainability Assessment tools, by default, a more comprehensive TBL sustainability assessment is performed.

Enhancements would be required in lifecycle considerations to ensure comprehensiveness.

A Sustainability Assessment tool, **Envision**, is selected to be used as the basis for the development of the new integrated tool

Why a Sustainability Framework as a basis for the new Tool development:

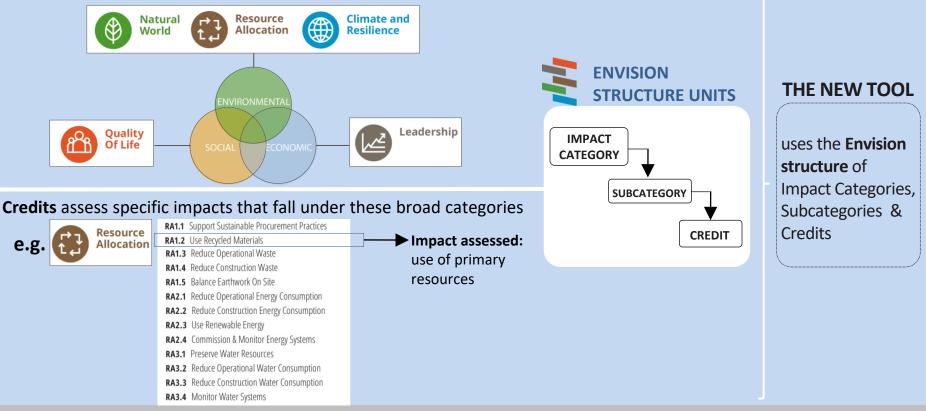

- A sustainability framework, by definition, accounts for the environmental, social, and economic impacts of a project.
- The sustainability frameworks consider the entire lifecycle of a project.
- The sustainability frameworks propose a shift of focus from monetary to the total value.
- A straight-forward, easy-to-use model is required.

Moreover, in relation to transportation in infrastructure projects:

- The sustainability rating systems sufficiently capture the nature of sustainable transportation strategies and the areas of priority and concern, such as:
 - o selection between replacement or major rehabilitation
 - o Durability and reduction of maintenance needs
 - Impacts of construction to the community (disruption of access)
 - o Materials
 - Costs and cost offsetting

Additional consideration for the new integrated tool

During **early decision making**, project teams would best benefit from a tool that allows them to understand the **whole-life impacts associated with each strategy** they consider incorporating into a project

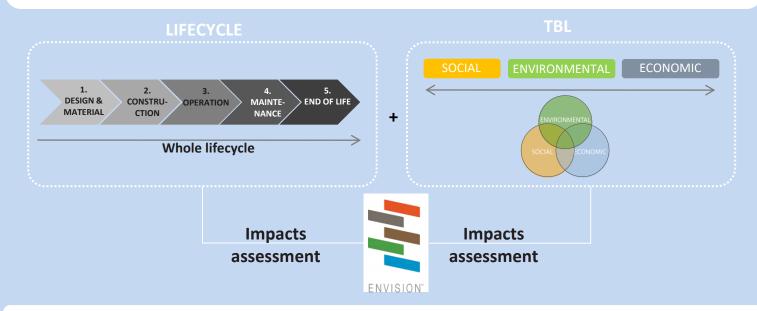


Prof. S.N Pollalis

ENVISION AS BASIS FOR THE NEW TOOL

Impact assessment in Envision

Envision structures TBL impacts into 5 broad Impact Categories:



KEY COMPONENTS OF THE TOOL

Based on the Envision Framework, the proposed tool assesses impacts:

- Across the lifecycle of infrastructure projects
- With respect to all areas of the TBL categories

TBL IMPACTS & LC STAGES are the key components of the new tool

LIFECYCLE STAGES CONSIDERED IN THE TOOL

Whole lifecycle

- 1. DESIGN & MATERIAL PRODUCTION
- 2. CONSTRUCTION
- 3. OPERATION
- 4. MAINTENANCE (minor and/or major rehabilitation)
- 5. END OF LIFE

LC STAGES

The lifecycle stages of infrastructure projects are defined based on the literature review and the needs of infrastructure projects

Prof. S.N Pollalis

TBL IMPACTS ASSESSED BY THE TOOL

		_			
SOCIAL	ENVIRONMENTA	٨L	ECONOMIC		
			AGENCY	US	
Access	Materials		Capital	Travel	
Safety	Energy		(initial)cost	value	
Health	Embodied energy		O&M cost	Vehicle	
Noise	Water		Rehabilitation	Fuel co	
Light pollution	Water quality		cost	Fare co	
Community	Embodied water		Replacement cost	Accide	
satisfaction	Air quality		Residual value	Health	
Inclusivity	Waste		Revenues	Job cre	
Equity	Soil quality		Delay cost	Econor	
Sense of place	Emissions		Liability claim /	prospe	
Wellbeing	Embodied carbon		Penalty cost	Resilie	
Livability	Ecosystem quality		Noise cost	value	
Integration	Resource depletio	n	Restoration cost	Ecosys	
Capacity building	Land occupation		Resilience value	service	
Social resilience	Climate change		Ecosystem	value	
	Ecological Resilien	ce	services value		

time le cost cost cost ent cost h cost reation omic erity ence stem es

TBL IMPACTS

- A targeted interpretation of the Envision manual reveals a list of specific TBL impacts that are extensively addressed by the tool
- Impacts are a key component of the tool
- The areas of impact are primarily classified based on the TBL category they fall into

The list of impacts includes only the **abbreviations of the impacts** addressed.

The exact definitions for each one of the impacted areas are included in the new tool's manual.

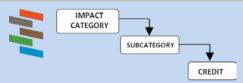
Examples of definitions

Materials= use of primary materials

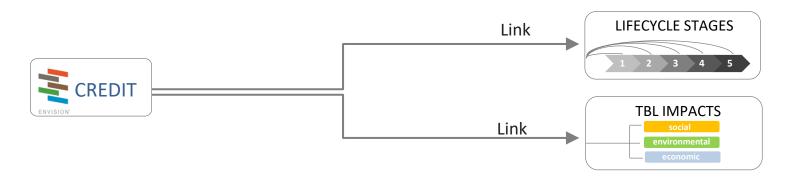

Energy= fuel & electricity use; depending on the credit could refer to fuel use of equipment/ vehicles.

Water = quantity of freshwater used during construction works and O&M, as well as embodied water of materials

Resiliency value= value of protection from the effects of future/repeat disasters or enhanced reliability, such as avoided future cost of damage, displacement, or cost of loss of service that may create a financial downturn or slowdown for the organization.


Travel time value= avoided cost of time spent on transport. It includes costs to businesses when their employees and vehicles spend on travel and costs to consumers of personal (unpaid) time spent on travel.

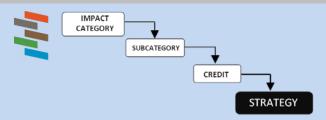
TBL IMPACTS ASSESSED BY THE TOOL



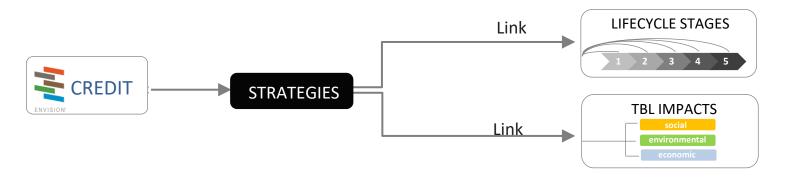
THE USE OF ENVISION

How is the Envision Framework used to integrate	
TBL-impacts assessment with LCA assessment?	

By linking its fundamental structural unit – the <u>CREDIT</u> – with <u>LC STAGES</u> and <u>TBL-IMPACTS</u>

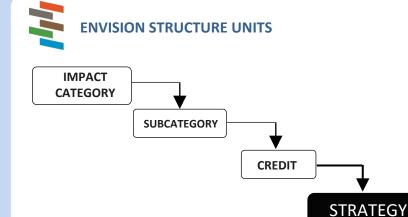

However, for most credits this linking is not direct, as there are various approaches to address a

credit with different outcomes each.

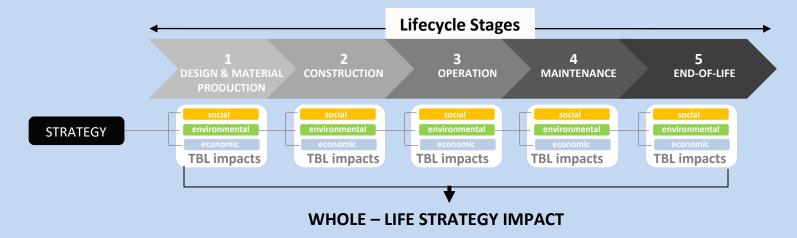


INTRODUCING STRATEGIES

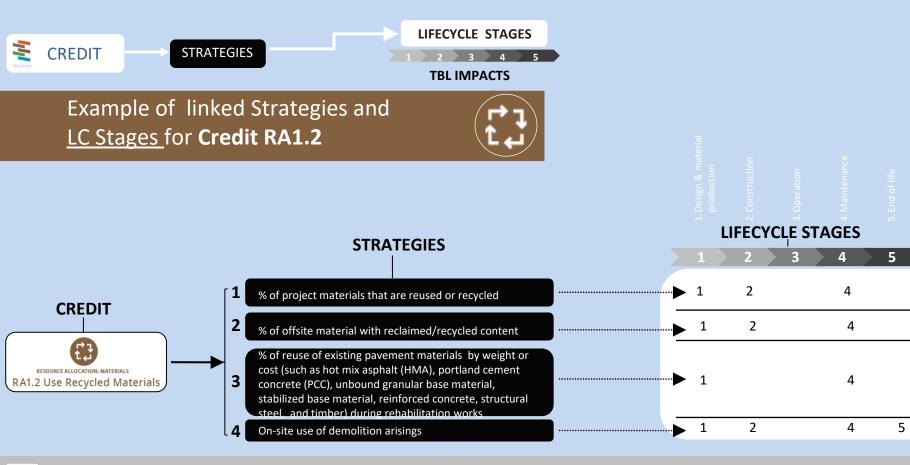
To achieve the link between CREDITS , LC STAGES and TBL
IMPACTS, the tool introduces an additional 'unit':
<u>STRATEGIES</u>


Strategies are the connecting link between each credit with the lifecycle stages and the TBL impacts

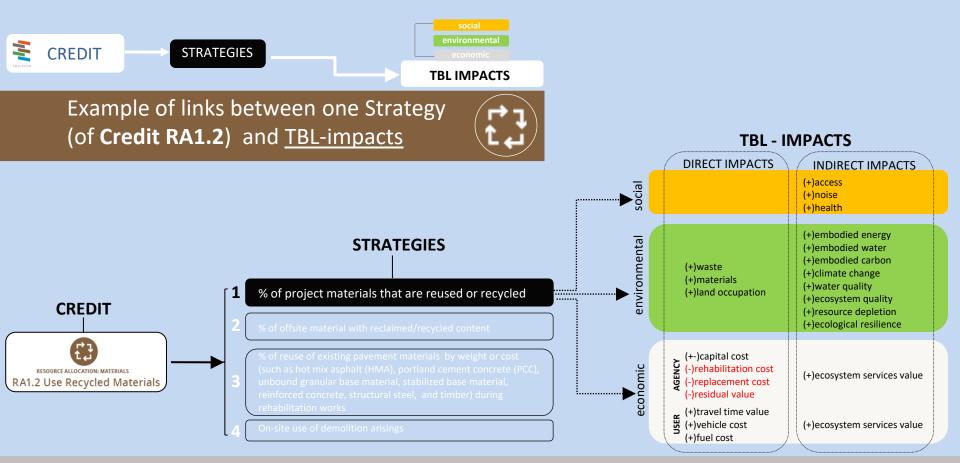
Each Envision credit is **linked with one or more complementary or alternative strategies**, which in turn result in several impacts (linked TBL-impacts) across the lifecycle stages (linked LC stages) of the project


- Strategies are extracted from the Envision manual. They are found in the description of each credit's evaluation criteria.
- In Envision they appear as "performance indicators", guiding towards the achievement of the respective credits.

The new tool uses strategies as a new structure unit within the Envision structure



Apart from connecting credits with lifecycle stages and TBL impacts, the strategies also link TBL – impacts with LC stages
In this sense, the TBL impacts assigned for each strategy take into consideration the whole lifecycle of the strategy


LINKS WITH LC STAGES

ZOFNASS PROGRAM FOR SUSTAINABLE INFRASTRUCTURE

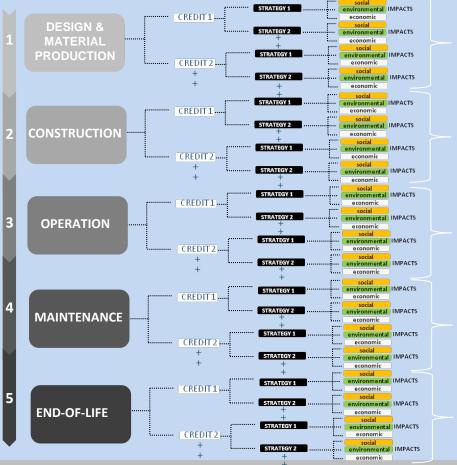
Prof. S.N Pollalis

LINKS WITH TBL IMPACTS

TOOL STRUCTURE

 \circledast

රු


social **MPACTS** environmental **STRATEGY 1** economic social IMPACTS **CREDIT 1** environmental STRATEGY 2 economic social IMPACTS STRATEGY 3 environmental economic social IMPACTS ENVISION CATEGORIES environmental STRATEGY 1 economic social IMPACTS **CREDIT 2** STRATEGY 2 environmental economic social IMPACTS environmental STRATEGY 3 economic social STRATEGY 1 environmental Σ economic social IMPACTS **CREDIT 3** STRATEGY 2 environmental economic + social IMPACTS + STRATEGY 3 environmental economic

All Envision credits from all Envision categories are linked through their strategies to TBL impacts

Based on Envision's structure, the tool's structure is formed through the links described

TOWARDS WHOLE LIFE PROJECT IMPACTS

FNASS PROGRAM

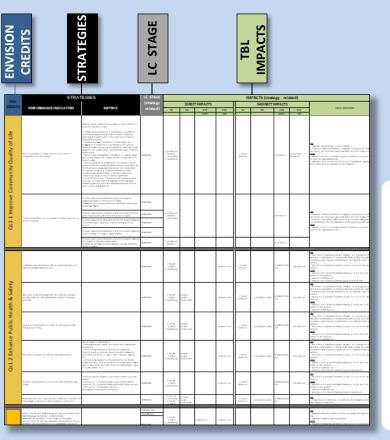
FOR SUSTAINABLE INFRASTRUCTURE

MATERIAL PRODUCTION IMPACTS CONSTRUCTION IMPACTS **OPERATION** IMPACTS (O&M) MAINTENANCE IMPACTS (major or minor rehabilitation) **END-OF-LIFE** IMPACTS

DESIGN &

WHOLE LIFE PROJECT IMPACTS

The tool identifies and classifies all TBL impacts from all LC stages


LIFECYCLE SUSTAINABILITY TOOL

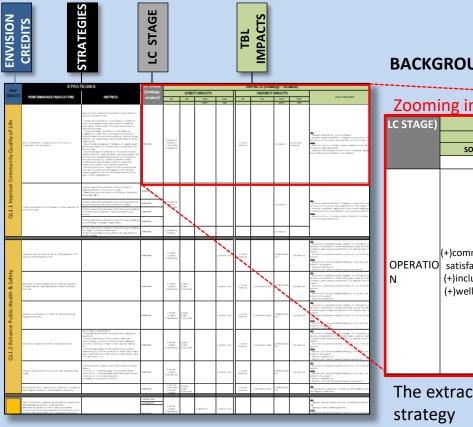
Prof. S.N Pollalis

(replacement or

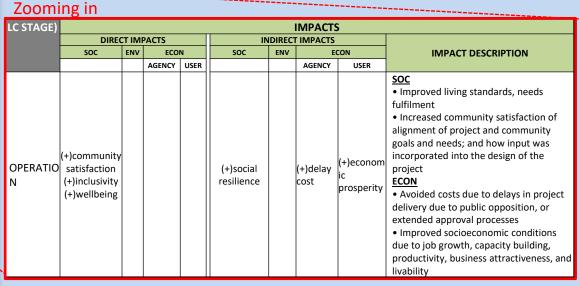
deconstruction)

BACKGROUND EXCEL TABLE

BACKGROUND EXCEL TABLE


The connections **between ENV Credits, LC stages, Strategies** and **TBL Impacts** are mapped in an extensive background excel table, which will provide the basis for the tool's function.

Additional information is inserted to allow **for multilevel analysis on several parameters:**


- Strategies are accompanied by their qualitative and quantitative requirements (metrics)
- All impact areas are listed for each strategy
- Each impact is accompanied by properties as to the type of its connection with the strategy: (Direct or indirect, environmental, social, economic, economic impact to user, economic impact to agency)

BACKGROUND EXCEL TABLE

BACKGROUND EXCEL TABLE

The extract shows the included information regarding the impacts of a strategy

CREDITS GROUPINGS

The background excel table allows for several new interpretations of the Envision credits based on the additional attributes inserted (strategies, impacts and lifecycle stages) Indicatively, credits **can be grouped under the Lifecycle stages** they address **or under the TBL categories** they have impacts on

			CICL	L 017							
DESIGN &	LD1.4	LD2.3	LD2.4	LD3.1	LD3.3						
MATERIAL	RA1.1	RA1.2									
PRODUCTION	CR1.1	CR1.3	CR2.5								
	QL1.3	QL1.6	QL3.3								
	LD1.1	LD1.2	LD1.3	LD1.4	LD2.1	LD2.3	LD3.2	LD3.3			
CONSTRUCTION	RA1.2	RA1.4	RA1.5	RA2.2	RA3.3						
	NW1.1	NW1.3	NW1.4	NW2.1	NW2.2	NW2.3	NW3.2	NW3.4			
	CR1.1	CR1.3	CR2.5								
_					010.4		010.4	010.0	010.4		
	QL1.1	QL1.2	QL1.4	QL1.5	QL2.1	QL2.2	QL3.1	QL3.2	QL3.4		
	LD1.1	LD1.2	LD1.3	LD1.4	LD2.1	LD2.2	LD3.1	LD3.2			
OPERATION	RA1.3	RA2.1	RA2.3	RA2.4	RA3.1	RA3.2					
	NW1.1	NW1.2	NW1.3	NW1.4	NW2.1	NW2.2	NW2.4	NW3.1	NW3.3	NW3.4	NW3.5
	CR1.1	CR1.2	CR1.3	CR2.1	CR2.2	CR2.3	CR2.5	CR2.6			
	011.2	011.0	012.2								
	QL1.3	QL1.6	QL3.3	181.4	100.4		1000				
	LD1.1	LD1.2	LD1.3	LD1.4	LD2.1	LD2.3	LD3.2	LD3.3			
MAINTENANCE	RA1.2	RA1.4	RA1.5	RA2.2	RA3.3						
	NW1.1	NW1.3	NW1.4	NW2.2	NW2.3	NW2.4	NW3.3	NW3.4			
	CR1.1	CR1.3	CR2.5								
	QL1.3	QL1.6	QL3.3								
END-OF-LIFE	LD1.1	LD1.2	LD1.3	LD1.4	LD2.1	LD2.3	LD3.1	LD3.2			
	RA1.2	RA1.4	RA1.5	RA2.2	RA3.3						
							NW3.3	NW3.4			
	NW1.1	NW1.2	NW1.4	NW2.2	NW2.3	NW2.4	10003.3	11103.4			
	CR1.1	CR1.3	CR2.5								

LIFECYCLE STAGES GROUPING

CREDITS GROUPINGS

The background excel table allows for several new interpretations of the Envision credits based on the additional attributes inserted (strategies, impacts and lifecycle stages)

Indicatively, credits can be grouped under the Lifecycle stages they address or under the TBL categories they have impacts on

				T	BL GF	ROUP	PING											Direct	impact
																		Indire	ct impact
	QL1.2	QL1.3	QL1.4	QL1.5	QL1.6	QL2.1	QL2.2	QL2.3	QL3.3	QL3.4									
	LD1.1	LD1.2	LD1.4	LD2.1	LD2.2	LD2.3	LD2.4	LD3.3			-								
ENVIRONMENTAL	RA1.1	RA1.2	RA1.3	RA1.4	RA1.5	RA2.1	RA2.2	RA2.3	RA2.4	RA3.1	RA3.2	RA3.3	RA3.4						
	NW1.1	NW1.2	NW1.3	NW1.4	NW2.1	NW2.2	NW2.3	NW2.4	NW3.1	NW3.2	NW3.3	NW3.4	NW3.5						
	CR1.1	CR1.2	CR1.3	CR2.1	CR2.2	CR2.3	CR2.4	CR2.5	CR2.6										
	QL1.1	QL1.2	QL1.3	QL1.4	QL1.5	QL1.6	QL2.1	QL2.2	QL2.3	QL3.1	QL3.2	QL3.3	QL3.4						
	LD1.1	LD1.2	LD1.3	LD1.4	LD2.1	LD2.2	LD2.3	LD2.4	LD3.1	LD3.2	LD3.3								
SOCIAL	RA1.1	RA1.2	RA1.3	RA1.4	RA1.5	RA2.1	RA2.2	RA2.3	RA3.1	RA3.2	RA3.3	RA3.4							
	NW1.1	NW1.2	NW1.3	NW1.4	NW2.1	NW2.2	NW2.3	NW2.4	NW3.1	NW3.2	NW3.3	NW3.4	NW3.5						
	CR1.1	CR1.2	CR1.3	CR2.1	CR2.2	CR2.3	CR2.4	CR2.5	CR2.6										
	QL1.1	QL1.2	QL1.3	QL1.4	QL1.5	QL1.6	QL2.1	QL2.2	QL2.3	QL3.1	QL3.2	QL3.3	QL3.4						
	LD1.1	LD1.2	LD1.3	LD1.4	LD2.1	LD2.2	LD2.3	LD2.4	LD3.1	LD3.2	LD3.3								
ECONOMIC	RA1.2	RA1.3	RA1.4	RA1.5	RA2.1	RA2.2	RA2.3	RA2.4	RA3.1	RA3.2	RA3.3	RA3.4							
	NW1.1	NW1.2	NW1.3	NW1.4	NW2.1	NW2.2	NW2.3	NW2.4	NW3.1	NW3.2	NW3.4	NW3.5	NW2.2	NW2.3	NW2.4	NW3.1	NW3.2	NW3.4 NW	3.5
	CR1.1	CR1.2	CR1.3	CR2.1	CR2.2	CR2.3	CR2.4	CR2.5	CR2.6										

Direct impact

The information inserted in the background excel table also revealed a set of 6 credits with special characteristics:

the KEY CREDITS.

The main characteristic of key credits is that their achievement is the result of a set of strategies that appear in other Envision credits. **They require thus input from other credits' strategies**

Another particular feature is that they **explicitly refer to core impacts**, which are at the centre of the research and aim to provide a basis for their quantification:

LD1.3 Provide Fo	or Stakeholder	Engagement
------------------	----------------	------------

LD3.1 Stimulate Economic Prosperity

LD3.3 Conduct A Lifecycle Economic Evaluation

CR1.1 Reduce net embodied carbon

CR2.2 Reduce GHG Emissions

CR2.5 Maximize Resilience

CORE IMPACTS ADDRESSED

- Impact on the community
- Impact on cost
- Impact on climate change
- Impact on resilience against future uncertainty

page 119

Typical layout of credit's description in LC tool's manual

CREDIT: QL1.2 Enhance Public Health & Safety

The credit assesses how the project protects and enhances community health and safety during operation.							
LC STAGE	DESIGN & MATERIAL PRODUCTION	CONSTRUCTION	OPERATION	MAINTENANCE	END-OF-LIFE		
			X				

			ENVIRONMENTAL SOCIAL		ECONC	OMIC				
			DEVISION MONTAL SUCIAL		AGENCY	USER				
TYPE OF DIRECT		DIRECT	(+) Water quality (+) Air quality (+) Ecosystem quality [®]	(4) Wellbeing (4) Health (4) Safety (4) Equity (4) Inclusivity		(+) Accident cost				
		INDIRECT IMPACT		(+) Social resilience	(+) Liability clim cost	(+) Health cost				
SOCIAL	 Reduction in respiratory diseases, allergens, etc. through the project's avaidance or minimization of 									
ECON	(india • Avoid	ators 1-6) ad healthcare c	est(indicators 1-5)	g., in the case of an acc		project)				

	PERFORMANCE INDICATORS	METRICS
1	Compliance with all relevant health and safety regulations and laws as an overarching prerequisite	
2	Exceedance of minimum legal health and safety requirements: through health and safety improvements within the project boundary	
3	Avoidance or minimization of health and safety risks through strategic project skipg	
4	Extent (ana of impact) of health and whity improvements	Area of impact of improvements of citizat improvements within the project boundary foreject operations) Additional improvements to the project for immediate summaring (e.g., protocold areas or international summaring (e.g., protocold areas of the to testing, responsed (photing, e.g.). Additional improvements to the boundar host on surface waters, higher water quality, better ar- uarily, access to heading solution in surface, exercise to heading solution in surface waters, higher water quality, better ar-

Reduced vehicle, bicyclist or pedestrian milisions per mile traveled Reduced no. of vehicle/ bicycle or pedestrian ncreased crash prevention and reduced crash fatalities severity through design Reduced no. of vehicle/ bicycle/ pedestrian sevi iniuries Reduced no. of near misses reported (as compare to pre-project conditions) of health and safety mitigation measures to all 6 ost impacted communities

CREDIT: QL1.3 Improve Construction Safety The credit assesses how the project addresses safety procedures for onsite workers and public.

Prof. Dr. S.N. Pollalis

LC N		DESIGN & MATERIAL PRODUCTIO	CONSTRUCTION OPERATION		MAINTENANC	E END-OF-UFE				
			×		×	×				
			ENVIRONMENTAL	SOCIAL		NOMIC				
			CR VINCHINGS INC	SUCIAL	AGENCY	USER				
TYPE OF IMPACT ASSESSED		DIRECT	(-) Land occupation (-) Energy	(+) Health (+) Safety (+) Wellbeing	(+-) Capital cost	(-) Travel time value (-) Vehicle cost (-) Fuel cost (+) Accident cost				
		INDIRECT IMPACT	(-) Emissions (-) Embodied energy (-) Embodied carbo (-) Embodied water (-) Climate change		(-) restoration cost	(+) Health cost				
Avoided hamild ensextre on the contraction will due to participations controls, induced aptivality froms, profibilitation (Induced no. 5-7) Additional (Immount) Induced avoid in and for availability of parcel near the construction site (Induced Immount) Additional due consumption for the basing of components assembled or profibricated off-site (Induced Induced Induced Induced Induced Induced Induced Induced Induced Induced Income of emission due to potential nouse from the temporary and to the site and the profibrication Income of embodied memory water and cateors in the case of emisfericated										
Increased improved unity, wain and cardon in the care of preventiant importents (muchanny) Improved safety and health conditions for both public and workers through less exposure to risks Indicators 1-7) Reduced mode levels due to works performed off-site indicators 7)										

18/01/2021

INTEGRATING SUSTAINABILITY AND LCA PILOT APPLICATION ON TRANSPORTATION INFRASTRUCTURE PROJECTS

NATIONAL RESEARCH COUNCIL OF CANADA (NRCC) PROF. DR. S.N. POLLALIS

22 OCTOBER 2020

98 The mentioned impacts are indicative and limited to typical critical risks to human health and safety, as the range of impacts are dependent of the exact nature of the project 18/01/2021

Prof. Dr. S.N. Pollalis

page 170

FUNCTION AND USE OF THE TOOL

The **LC tool mapped the Envision structure** and content in a computer model in excel format

Through a new coding applied in the background excel table, the attributes assigned to each strategy -and indirectly to each credit- allow the user to perform analyses that focus in Lifecycle stages and Triple Bottom Line (TBL) impacts.

Therefore, the **enhanced** Envision manual was **transformed into a searchable and filterable format**, enabling and facilitating targeted analyses.

The most effective and useful capability of the tool is that it can automatically identify and extract all the Envision credits that relate to one or more selected impacts.

How can the tool identify credits based on selected criteria (e.g. specific TBL impacts or LC stages)?

By applying Excel's Autofilter feature to narrow data. All Envision credits can be thus filtered based on the criteria that the user selects (e.g. one or more TBL impacts or LC stages).

OBJECTIVE

Example

of use :

FILTERING CREDITS BASED ON ONE SELECTED TBL-IMPACT

The project team is interested in assessing the **energy consumption** throughout the whole lifecycle of a project

FILTER USED	Impacts: 'energ LC stage: -	gy'	Envision credits are filtered based on the impact ' energy ' during all LC stages				
FILTER RESULT	Impact LC addressed stage V V	No of related strategies Resu ↓	Iting Envision credits ψ				
	Energy (use) all	LD1.2 LD1.2	QL1.5 QL1.6 QL2.1 QL2.2 QL2.4 QL3.4 D2.3 LD2.4 RA2.1 RA2.2 RA2.3 RA2.4 RA3.3				

FILTERING CREDITS BASED ON ONE SELECTED TBL-IMPACT DURING A SPECIFIC LC STAGE

Example of use :

OBJECTIVE	The project team is interested in assessing the energy consumption during onstruction										
FILTER	Impacts: 'energy' Envision credits are filtered based on										
	LC stage: 'construction'the impact 'energy' only during the construction phase (on site)										
FILTER RESULT	Impact LC No of related addressed stage strategies \downarrow \downarrow \downarrow \downarrow										
	Energy (use)ConstructionQ1QL1.3QL1.6LD1.2LD2.3RA1.2RA2.2										

E O

FILTERING CREDITS BASED ON MULTIPLE TBL-IMPACTS

Example of use :	OBJECTIVE	The project te	The project team is interested in assessing project resilience to climate change									
	FILTER USED		'resilience value (agency)' 'resilience value (user)'				Envision credits are filtered based on t impacts related to resilience during al					
		LC stage:	-			stages						
	FILTER	Impact addressed _s		f related ategies Resulti	ing En	vision	credi	ts				
	RESULT	↓ ↓	√ V	\checkmark		\downarrow						
		Resilience value (agency)	all	LD1.2 LD 108 RA2.1 R NW2.2 NV	L2.2 QL2 D1.4 LD2 A2.3 RA3 W2.3 NW R1.2 CR2	2.3 LD2.4 3.1 RA3.2 3.1 NW3.2	LD3.1 RA3.4 NW3.3	LD3.2 NW3.4	LD3.3			
		Resilience value (user)	all	QL2.1 Q LD1.2 LD 88 RA2.3 R/ NW2.2 NV	L2.2 QL3 D2.3 LD3 A3.1 RA3	2.3 LD3.1 3.2 NW3.4	LD3.2	LD3.3				

As shown by the filter result the tool assist to identify resilience-related credits beyond the Climate & Resilience category.

FILTERING FOR THE ACHIEVEMENT OF KEY CREDITS

- The tool has identified specific TBL core impacts that each key credit needs to address
- The tool identifies all strategies across various credits that contribute to these impacts by filtering all credits based on each key credit's core impact

KEY CREDITS								
	IMPACT FOR FILTERING	TBL CATEGORY						
LD1.3 Provide For Stakeholder Engagement	community satisfaction	SOCIAL						
LD2 1 Stimulata Economia Drocnovity	economic prosperity	ECONOMIC						
LD3.1 Stimulate Economic Prosperity	travel time value	ECONOMIC						
LD3.3 Conduct A Lifecycle Economic Evaluation	all economic impacts	ECONOMIC						
CR1.1 Reduce net embodied carbon	embodied carbon	ENVIRONMENTAL						
CR2.2 Reduce GHG Emissions	emissions	ENVIRONMENTAL						
CR2.5 Maximize Resilience	resilience value	ECONOMIC						

OBJECTIVE

Example

of use :

FILTERING FOR THE ACHIEVEMENT OF KEY CREDITS

The project team is interested in achieving Key Credit LD3.1 Stimulate Economic Prosperity

FILTER USED	Impacts:'economic prosperity' 'travel time value'Envision credits are filtered based core impacts addressed by the Ke	
	LC stage: -	
FILTER RESULT	Impact LC No of related addressed stage strategies Resulting Envision credits	
	\checkmark \checkmark \checkmark \checkmark	
	Economic prosperity all 92 QL1.1 QL2.1 QL2.2 QL3.3 QL3.1 QL3.4 LD1.1 LD1.3 LD1.4 LD3.1 LD3.2 LD3.3 NW1.3 NW1.4 NW3.2 NW3.3	
	Travel time value all CR2.5 CR2.6 Value All QL1.3 QL1.6 QL2.1 QL2.2 QL2.3 NW2.4 RA1.2 RA1.3 RA1.4 RA1.5 RA2.2 RA2.3	

Travel time value= avoided cost of time spent on transport. It includes costs to businesses when their employees and vehicles spend on travel and costs to consumers of personal (unpaid) time spent on travel.

THE TOOL'S ABILITY TO "FILTER" ENVISION CREDITS

FILTERING FOR THE ACHIEVEMENT OF KEY CREDITS

			No of														
		Impacts	correspond	lin		Re	sult	ing	Cree	dits	fron	n all					
CREE	Л	S addressed	g strategies	s		En	visio	on ca	ateg	orie	s						
\downarrow		\checkmark	Ŭ ↓ Ŭ						7	/							
LD1.3	Cor	mmunity satisfaction	12 indicators	QL1.1	QL1.4	QL1.6	GL2.1	QL3.1	Q13.2	QLS.3	QL3.4	1					
LD3.1	Eco	onomic prosperity	92 indicators	011.1 RAI 1	012.1 R42.3	QL2:2 NW1.3		Q13.1	QL3.4	LD1.1 NW3.3		LD1.4 CR2.6	103.1	LD3.2	103.3		
	Travel time value		56 indicators	QL1.3								RA12	RA1.3	RA1,4	RA1.5	RA2.2 R	43.3 NW2.4
		Capital cost	142 indicators	GL1.3 RAI 1 NW1.1		011.5 RA1.4 NW2.1	GL2.1 RA1.5 NW2.2	OL2.2 RA2.1 NW2.8	OL2.3 RA2.2 NW3.1	CL3.3 RA2.3 NW3.2	QL3.4 RA2.4 NW3.4	LD1.2 RA3.2 NW3.5	LD2.3 RA3.3 CR1.2	LDZ,4 RA3.4 CR1.3	LD3.3	CR2.6	
		O&M cost	86 indicators	QL1.5			OL23			101.4 CR2.5	L02.3		RA1.3	RA2.1		and the second second	A3.2 RA3.4
		Major rehabilitation cost	58 indicators	GL1.4			012.3	QL3.4	LD1.2	LD2.3	LD33	RA1.2	NW3.1	NW3.3	CR2.5 (CR2.6	
	costs	Replacement cost	64 indicators	0114					LD1 2			LD3.3	RA1.2	RA2.4		W3.2 N	W3.3 CR2.5 C
		End-of-life cost	3 indicators	102.4													
	ency	Residual value	48 indicators	012.1	012.2	012.3	CL3/4	LD1.2	LD2.3	102.4	LD3.3	RA1.2	NW3.1	NW3.3	CR2.5		
	-Se	Revenues	27 indicators	012.1													
		Delay cost	28 indicators	QL1.1						101.3	LD3.3	NW2.4	NW3.5	NW3.1	NW3.5	CR2.5	
		Liability claim cost	12 indicators	GL1.2													
LD3.3		Penalty cost	31 indicators	GL1.6		R43.1		NW1.2	NW2.1	NW2.2	CR1.1	GR1.2	681.3				
		Noise cost	19 indicators	QL1.4													
		Restoration cost	31 indicators	GLLS				R43.1	R43.4	NW1.3	NW2.4	NW3.1	NW3.2	NW3.5			
	Г	Travel time value	56 indicators	GL1.3						103.1		RA1.2	RA1.3		RA1.5	RA2.2 R	A3.3 NW2.4
		Vehicle cost	49 indicators	GL1.3								RA1.2	RA1.3	RA1.4	RA1.5	RA2.2 8	A3.3 NW2.4 N
		Fuel cost	48 indicators	QL1.3								RA1.2	RAL3	RA1.4	RA1.5	R42.2 R	NW2.4
	3	Fare cost	4 indicators	QL2.1													
	COS	Accident cost	55 indicators	GL1.2									RA1.4	RA2.1			W2.2 NW3.1
	user	Health cost	104 indicators	GL1.2 NW2.1						QL2.2 NW3.3	QL2.3 NW3.4	LD1.4	102.3	103.3	RAZ 1	RA3.3 R	A3.4
		Job creation	22 indicators	GL2.1					NW2-1								
		Economic prosperity	92 indicators	QL1.1 RA1.1	012.1 RA2.3	012/2 NW1.3							LD3.1	103.2	LD3.3		
CR1.1	Em	bodied carbon	85 indicators	GL1.3 RA1.5	0114 RA2.2	QUIS RA2.3	GL1.6 RA2.4	QL2.1 RA3.3			GL3.4 NW3.1	LD1.2 NW3.3	LD1,4 NW3,4	LD2.3 NW3.5	LD2.4 CR2.5	and the property last	A1.2 RA13 R
CR1.2	Em	issions	94 indicators	Q11.3 RA1.4		R42.1	QL1.6 RA2.2	Q12.1 RA2.3	QL2.2 RA2.4	CL2.8 RAS.5				1D2.4			
CR2.5	Res	silience value (agency)	108 indicators	QL2.1 RA2.1	RA2.3	QL2.3 RA3.1	LD1.2 RA3.2	LD1.4 RA3.4					LD3.3 NW3.3	NW3.4	CR1.3	GR2:5 CI	R2.6
	Res	silience value (user)	88 indicators	QL2.1 RA2.3	Q12.2 RA3.1	QL2.3 RA3.2	LD1.2 NW2.2		LD2.4 NW3.2			LD3.3 CR1.2	CR2.5	CR2.6			

•The impacts of key credits provide the basis for this filtering

•The filtering result indicates which strategies should be applied to achieve Key credits.

•The strategies are described in detail in the background table

The Lifecycle Sustainability Tool can be used as:

Lifecycle assessment tool:

Combined with the Envision framework tools, the tool can assist users to identify and understand their project's TBL impacts, as well as evaluate its performance in each lifecycle stage.

Multiple criteria, decision-making tool:

Provides an informed framework for comparative analysis between different alternatives whose impacts and benefits can be directly assessed and addressed.

Evidence-based documentation of project decisions:

The tool can assist infrastructure owners to support their decisions with evidence of TBL and whole life impacts or efficiently document experience-based strategies.

Guidelines to enhance sustainable performance:

Sustainability indicators serve as guidelines to **enhance the project's sustainable performance**. In the early stages of planning and design development, the indicators could function as targets to pursue.

Educational manual for lifecycle sustainability:

Providing information regarding the impacts of each sustainability strategy along the lifecycle it educates on best-performing strategies in the long-term.

PILOT APPLICATION OF THE TOOL

PILOT APPLICATION OF THE TOOL ON A BRIDGE REPLACEMENT PROJECT The **Sustainability Lifecycle Tool** was pilot used on a transportation project **to demonstrate** how:

- it can assist project teams with evidence and documentation of their decisions on strategies and specifically evidence of how these strategies address TBL sustainability and lifecycle performance.
- to test if an agency's **areas of priority and concern** are adequately captured.

A small-scale **typical bridge replacement project** by the Ministry of Transportation of Ontario (MTO) West Region was used as a case study to provide input for the research.

PROJECT OVERVIEW

Project Name: Ba Project Type: Tv Location: Or Owner : M Project Team: M Project Lifespan: 75 Year of construction 20 Current Status: Op

e: Bayfield River Bridge Replacement Project
e: Two-lane Rural highway Bridge Replacement
n: Ontario, Canada
r: MTO's West Region
m: McIntosh Perry
n: 75 years
on 2019
s: Operating

The project incorporated a mix of both **agency-wide established strategies** as well as **innovative approaches** that have been pilot-tested and proven successful, such as:

- Use of integral abutments with joint-less details, a zero-maintenance solution
- Use of accelerated bridge construction (ABC) to reduce construction duration, minimize public disruption, and avoid project construction carry-over beyond one construction season.

PROJECT OVERVIEW

	Existing 87yr-old bridge	New bridge with 75 yr-service life				
Span	two-span	Single-span				
Overall structure width	11.53 m	14.96 m				
Length	32.5 m	40.0 m				
Roadway width	9.402 m					
Width of lane	3.65 m	3.75 m				
Width of shoulder	1.3 -3.0	2.0- 2.5 m				
Sidewalk width	1.2 m	2.0 m				
Superstructure Type	Cast-in-place concrete tee-beam structure	Composite Steel Box Girder				
Substructure Type	Cast-in-place concrete abutments and concrete pier, both founded on spread footings	Precast integral abutments on steel H-piles and precast cantilevered wing walls				

PROJECT OVERVIEW

LIFECYCLE SUSTAINABILITY TOOL

Use of Duplex 2205 grade stainless steel in the entire deck and approach slabs

> Transport of the supermodule from the temporary yard to the site with multi-axle hydraulic trailers with spacers

> > Erection of supermodule

to its final position

Uplift of the supermodule with heavy lift crane (each component weighed approximately 90-95 tonnes and was 40.6 m long)

The project's **core strategies identified** through the Envision Checklist:

CORE	STRA ⁻	TEGIES

Bridge replacement vs. rehabilitation

Single-span vs. original two-span

Use of Integral abutment with joint-less details

Redundant corrosion protection system (use of premium materials)

Construction quality

Salvage of old structure parts

ABC construction

Use of prefabricated components

Performance of selected works off-site during a seasonal shutdown

Staged construction

Correction of horizontal alignment

Correction of vertical alignment & embankment widening

Widening of the highway section

Increased sidewalk width

Extension of the sidewalk beyond project limit

Provision for a future bicycle lane

Use of ready-mix plant near worksite (15 min)

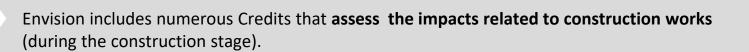
- They are strategies that emerged during discussion with the representatives of the MTO's West Region.
- They secure optimized durability, minimize future maintenance needs and minimization of community disruption.
- They enable cost offsetting through a balance of downsizing of structures, less materials and schedule efficiency.

PROJECT CORE STRATEGIES & ENVISION CREDITS ADDRESSED

	CORE STRATEGIES	RELATED ENVISION CREDITS										
s	Bridge replacement vs. rehabilitation	QL1.2	QL1.4	QL2.1	LD2.3	LD2.4	LD3.1	LD3.3	CR1.1	CR1.2	CR2.5]
ge	Single-span vs. original two-span	NW1.2	NW3.1	NW3.2	NW3.3	LD2.3	LD3.3	CR1.1	CR2.2	CR2.3		
ate	Use of Integral abutment with joint-less details	QL1.6	LD2.3	LD2.4	LD3.3	CR1.1	CR1.2	CR2.2	CR2.3	CR2.4	CR2.5	
Str	Redundant corrosion protection system (use of premium materials)	LD2.3	LD2.4	LD3.3	CR1.1	CR2.3	CR2.5					The tab
Ë	Construction quality	LD2.3	LD2.4	LD3.3	CR1.1	CR1.2	CR2.5					how on
en en	Salvage of old structure parts	RA1.2	RA1.4	CR1.1								address
ě L	ABC construction	QL1.2	QL1.6	LD3.1	LD3.2	LD3.3	RA2.2					
top multi-benefit strategies	Use of prefabricated components	QL1.6	LD2.3	LD2.4	LD3.2	RA2.2					credits,	
힠	Performance of selected works off-site during a seasonal shutdown	QL1.3	QL1.6	LD2.3	LD3.3			-				multiple
입	Staged construction	QL1.3	QL1.6	LD3.1	LD3.3							address
	Correction of horizontal alignment	QL1.2	CR2.6									-
	Correction of vertical alignment & embankment widening	QL1.2	NW3.3	CR2.2	CR2.3	CR2.4	CR2.5	CR2.6				
	Widening of the highway section	QL1.2	QL2.1	LD2.3	LD3.1				-			
	Increased sidewalk width	QL1.2 QL2.1 QL2.3 LD1.3										
	Extension of the sidewalk beyond project limit	QL1.2	QL2.3	LD3.1		-						
	Provision for a future bicycle lane	QL2.1	QL2.2	QL2.3	CR2.6							
	Staged construction	QL1.3	QL1.6	LD3.1	LD3.3							
	Use of ready-mix plant near worksite (15 min)	RA2.2	CR1.1			-						

The table indicates how one strategy can address multiple credits, as well as how multiple strategies address one credit.

The project team made **significant efforts** to extend the useful life of the project in order to **minimize the need for maintenance works**.


These efforts are evident in the following core sustainable strategies they implemented in the project:

PROJECT'S CORE STRATEGIES RELATED TO REDUCTION OF FUTURE MAINTENANCE WORKS			F	RELATED I	ENVISIO	ON CRE	DITS			
Bridge replacement vs. rehabilitation	QL1.2	QL1.4	QL2.1	LD2.3	LD2.4	LD3.1	LD3.3	CR1.1	CR1.2	CR2.5
Single-span vs. original two-span	NW1.2	NW3.1	NW3.2	NW3.3	LD2.3	LD3.3	CR1.1	CR2.2	CR2.3	
Use of Integral abutment with joint-less details	QL1.6	LD2.3	LD2.4	LD3.3	CR1.1	CR1.2	CR2.2	CR2.3	CR2.4	CR2.5
Redundant corrosion protection system (use of premium materials)	LD2.3	LD2.4	LD3.3	CR1.1	CR2.3	CR2.5				

ENVISION

However, during the analysis of the project it was observed that the **Envision Checklist does not fully capture** the impacts related to minimization of **future maintenance works, a key area of concern for transportation projects**.

However, **the impacts of reducing maintenance works**, (i.e. future construction works during the maintenance phase) are assessed only by two credits:

LD2.3 Plan for Long-Term Monitoring and Maintenance

CR2.5 Maximize Resilience

These credits award how the project is designed and managed for an extended service life, and thus **avoids frequent future construction works** and their associated impacts.

Aiming towards a comprehensive assessment towards all LC stages, the LC Sustainability tool suggests that the impacts of the reduction of maintenance works should be assessed when documenting related credits.

How does the tool address and identify these impacts?

The LC Sustainability tool suggests a similar approach for the maintenance LC stage as with (initial) construction LC stage, that assesses as TBL impacts:

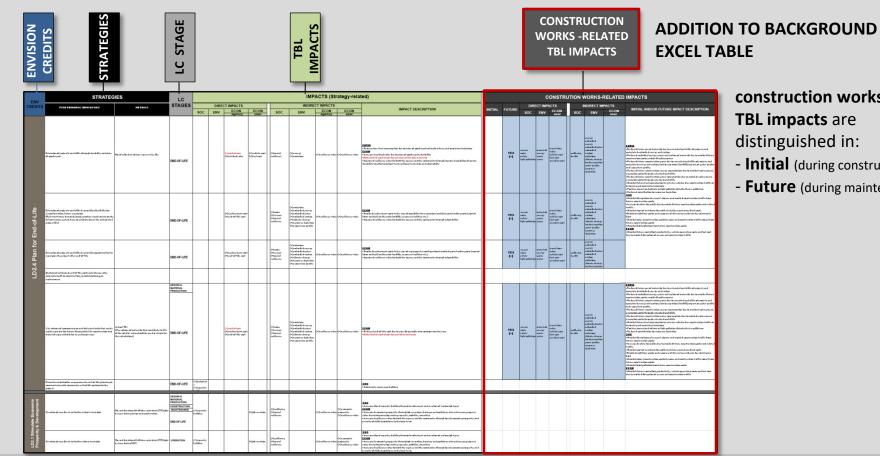
impacts of construction works

* Embodied carbon	and costs of future maintenance are
accounted by the re	levant credits

ACCOUNTING FOR THE TBL IMPACTS OF THE MAINTENANCE LC STAGE

To highlight the importance of decisions on strategies that minimize maintenance **needs**, the tool breaks down all positive impacts that derive from the avoidance of future construction works

Impacts of future construction works


DIRECT IMPACT	INDIRECT TBL IMPACT	DIRECT IMPACT	INDIRECT IMPACT				
Access	travel time value vehicle cost fuel cost Energy (fuel user) Emissions (user)	materials	 (+) embodied energy (+) embodied water (+) embodied carbon (+) climate change (+) resource depletion 				
	climate change	energy	(+) emissions(+) climate change				
Safety	health health cost Accident cost	waste	 (+) embodied energy (+) embodied water (+) embodied carbon (+) land occupation (+) water quality 				
Noise	noise cost wellbeing	water	(+) resource depletion				
	Health ecosystem quality	water quality	(+) resource depletion(+) ecological quality				
Light pollution	safety	air quality	(+) health				
	energy emissions	ecosystem quality	(+) ecological resilience				
	accident cost	land occupation	(+) ecological quality				
	ecosystem quality	soil quality	(+) water quality (+) ecological quality				

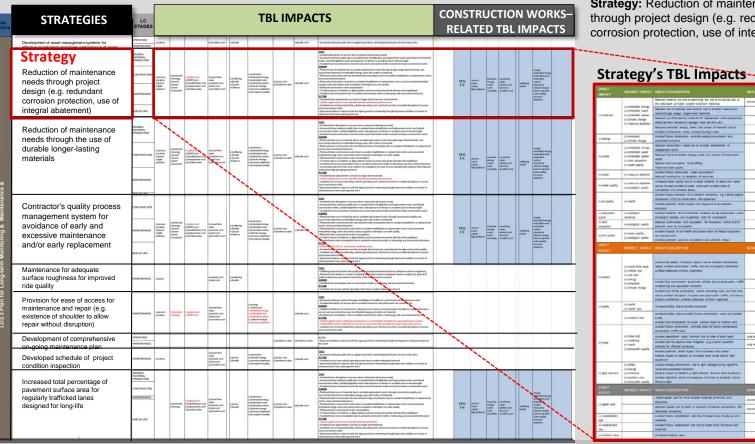
The tool, thus, incorporates **future construction works'** impacts to all relevant credits:

QL1.4 Minimize Noise & Vibration QL2.1 Improve Community Mobility QL2.2 Encourage Sustainable Transportation QL2.3 Improve Access & Wayfinding QL3.4 Enhance Public Space & Amenities LD1.2 Foster Collaboration and Teamwork LD2.3 Plan for Long-Term Monitoring & Maintenance LD2.4 Plan for end-of-life RA1.2 Use Recycled Materials NW3.3 Maintain Floodplain Functions CR2.5 Maximize Resilience CR2.6 Improve Infrastructure Integration

ACCOUNTING FOR THE TBL IMPACTS OF FUTURE CONSTRUCTION WORKS

Prof. S.N Pollalis

FNASS PROGRAM


SUSTAINABLE INFRASTRUCTURE

construction works-related TBL impacts are distinguished in:

- **Initial** (during construction phase)
- Future (during maintenance phase)

CREDIT LD2.3 Plan for Long-term Monitoring & Maintenance

Strategy: Reduction of maintenance needs through project design (e.g. redundant corrosion protection, use of integral abatement)

educer meteral use due to optimologi the size of structures dies to Deerstaires. methods use of materials partnersets that to avoided replaced Ballering characters works through steage, larger-load materials In Smalls Sharps In Smalls Sharps In Televice depictory In Televice depictory In Televice depictory makering charteners tailured entitedient energy, water, and parties of manaraticities Ballining chartmann mided maintenance meets, annihild heating mades access increase latering short-same Reformed land documentors. The landfillow ed valer quality due to avoided incolents of orders into course through avoided in-water works and avoided costs of unter Adure emissions of air polution emissions, e.g. volatile or manual ACC to pretrution site assessed adapted motions and of behavior costs for the al discustory of scenes' desire the technology under safe, and due to properly marries good report, advances surface roughteese) instant of the productivity, unlich no Balanting chartmann fecuring for the period in the pro-Long term mente for effected residence tied potential health impact that inclusion holds have talive impact on habitarty as increased roles levels datarty ther cooled energy consumption, the to light wantage during signific laboring for the particle allow impart on habitute as light pol Northerm. -Balaring chartoise

Strategy: Reduction of maintenance needs through project design (e.g. redundant corrosion protection, use of integral abatement)

CREDIT LD2.3 Plan for Long-term Monitoring & Maintenance

	\sim	DIRECT IMPACT	INDIRECT IMPACT	IMPACT DESCRIPTION	INITIAL	FUTURE
EDIT				Reduced material use due to optimizing the size of structures due to the redundant corrosion system/ premium materials	Short-term	
2.3		(+) materials	(+) embodied energy(+) embodied water	Reduced use of materials (permanent) due to avoided replacement works through design, longer-lived materials		Recurring short-term
n for g-term			(+) embodied carbon (+) climate change	Reduced use of temporary material for replacement works (equipment, safety barriers/ temporary signage, noise barriers, etc.)		Recurring short-term
g-term nitoring &			(+) resource depletion	Reduced embodied energy, water, and carbon of materials due to avoided maintenance needs; avoided hauling routes		Recurring short-term
ntenance S		(+) energy	(+) emissions(+) climate change	Avoided future construction worksite energy consumption and associated emissions		Recurring short-term
a			 (+) embodied energy (+) embodied water (+) embodied carbon (+) land occupation (+) water quality 	Reduced construction waste due to avoided rehabilitation or replacement works		
ntenance si -	$\left\{ \right.$	(+) waste		Reduced future embodied energy, water, and carbon of construction waste Reduced land occupation for landfilling Improved water quality		Recurring short-term
nta		(+) water	(+) resource depletion	Avoided future construction water consumption Reduced contribution to depletion of resources		Recurring short-term
me		(+) water quality	(+) resource depletion(+) ecological quality	Increased water quality due to avoided incidents of debris into water course through avoided in-water works and avoided costs of remediation and schedule delays		Long-term
Environmental		(+) air quality	(+) health	Avoided future emissions of air pollutant emissions, e.g. volatile organic compounds (VOC) by construction site equipment		Recurring short-term
i.				Avoided potential health impact from exposure to air pollutant emissions		Recurring short-term
L L		(+) ecosystem quality	(+) ecological resilience	Avoided incidents of environmental incidents during construction works to adjacent habitats and of potential costs for remediation		Long-term
-		(+) land occupation	(+) ecological quality	Reduced undeveloped land occupation (for temporary works) and of potential costs for remediation		Recurring short-term
Future construction	C	(+) soil quality	(+) water quality (+) ecological quality	Avoided impacts to soil health and preservation of related ecosystem services provision Avoided potential costs for remediation and schedule delays		Long-term
work-related impact	t	The table	indicates that the	strategy generates positive (+) environmental future im	pacts	

The table indicates that the strategy generates positive (+) environmental future impacts

Strategy: Reduction of maintenance needs through project design (e.g. redundant corrosion protection, use of integral abatement)

CREDIT LD2.3 Plan for Long-term Monitoring & Maintenance

cts	
pa	
Ē	-
ali	
Ŭ.	

<i>c</i>	DIRECT IMPACT	INDIRECT IMPACT	IMPACT DESCRIPTION	INITIAL	FUTURE
	(+) access	(+) travel time value (+) vehicle cost (+) fuel cost	Avoided disruptions of access/ closure due to reduced maintenance needs; avoided construction traffic; and due to properly maintained surfaces (adequate surface roughness)		Recurring for the period of works &
		(+) energy(+) emissions(+) climate change	Avoided fuel consumption by private vehicles due to construction traffic or detouring and associated emissions		Long-term (due to state of good
			Avoided cost of lost productivity, vehicle operating costs, and fuel costs due to avoided disruption of access and construction traffic; and due to properly maintained surfaces (adequate surface roughness)		repair, adequate surface roughness)
ts	(+) safety	(+) health (+) health cost	Increased safety due to durable structures		Long-term
mpacts		(+) accident cost	Increased safety due to avoided future construction works and related traffic Avoided cost of accidents for public (vehicle repair or medical cost)		Recurring short- term
Ē	(+) noise	(+) noise cost (+) wellbeing (+) health (+) ecosystem quality	Avoided future construction worksite noise for future maintenance; construction traffic noise		Recurring for the period of works
a			Avoided operational noise/ vibration due to state of good repair	Long-term	Long-term
Social		())	Avoided cost for passive noise mitigation (e.g.) Sound Insulation schemes for affected residences	Long-term	Long-term
			Avoided potential health impact from increased noise levels Positive impact on habitats as increased noise levels disturb their equilibrium		Long-term
uction	(+) light pollution	 (+) safety (+) energy (+) emissions (+) accident cost (+) ecosystem quality 	Avoided energy consumption due to light wastage during nighttime works and associated emissions Positive impact on habitats as light pollution disturbs their equilibrium Avoided nighttime works and exposure of drivers to accidents due to intrusive light		Recurring for the period of works

Future construction work-related impact

The table indicates that the strategy generates positive (+) social future impacts

Strategy: Reduction of maintenance needs through project design (e.g. redundant corrosion protection, use of integral abatement)

CREDIT LD2.3 Plan for Long-term Monitoring & Maintenance

	DIRECT IMPACT	INDIRECT IMPACT	IMPACT DESCRIPTION	INITIAL	FUTURE
\int			Added capital cost for more durable materials (premium) and structures	Short-term	
	(-) capital cost	Reduced capital cost for labor or transport of heavier components (for downsized structures)	Short-term		
1	(+) rehabilitation cost		Avoided future rehabilitation cost due to longer-lived structures and materials		Recurring short-term
	(+) replacement cost		Avoided future replacement cost due to longer-lived structures and materials		Recurring short-term
	(+) residual value		Increased residual value		future

Future construction work-related impact

Economic impacts

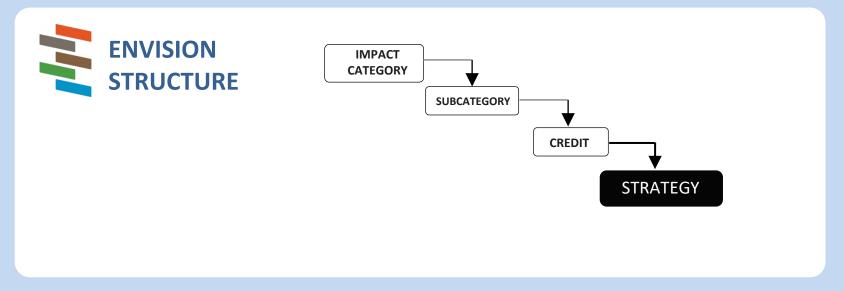
The table indicates that the strategy's added initial capital cost (for premium materials) is offset (partially or entirely*) by positive (+) economic future impacts

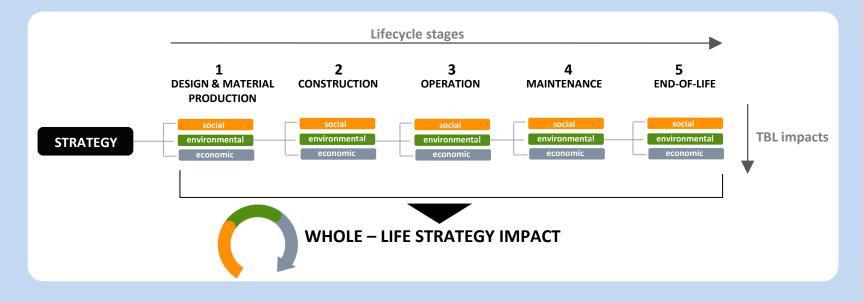
* The net cost balance is yet to be quantified. The LC Sustainability tool doesnot provide with net balances neither for cost or other impacts. The tool identifies and maps impacts and it is up to the project team to further quantify or monetize impacts.

The Lifecycle Sustainability tool provides evidence-based documentation of the Bayfield Bridge replacement project decisions:

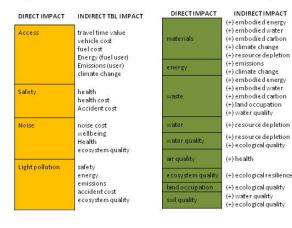
The tool assists the MTO's West Region to support and document their decisions with evidence of TBL and whole life impacts of the strategies that were incorporated in the project (both innovative and experience-based strategies).

It specifically address key areas of concern for transportation projects, such as the TBL impacts of the Maintenance LC stage





Creation of list of strategies per Envision credit. A new structural unit was added to the Envision structure: the strategies towards achieving each credit


2 Each credit strategy is linked to its direct & indirect TBL impacts for all lifecycle stages

3 Addition of a lifecycle dimension to impacts, as in the case of the impacts of future maintenance works

impacts of future construction works-related impacts

Strategies were linked with 'future construction works' impact where relevant.

This impact contains all social and environmental impacts that result from construction works as in the case of future rehabilitation or replacement needs that were not fully captured by Maintenance stage-related Envision credits

The identification of key credits as credits that request input from other Envision credits

KEY CREDITS	CORE IMPACTS ADDRESSED	
	TBL IMPACT FOR FILTERING	TBL CATEGORY
LD1.3 Provide For Stakeholder Engagement	COMMUNITY SATISFACTION	SOCIAL
LD2.1 Stimulate Feenemie Dreenerity	ECONOMIC PROSPERITY	ECONOMIC
LD3.1 Stimulate Economic Prosperity	TRAVEL TIME VALUE	ECONOMIC
LD3.3 Conduct A Lifecycle Economic Evaluation	ALL ECONOMIC IMPACTS	ECONOMIC
CR1.1 Reduce net embodied carbon	EMBODIED CARBON	ENVIRONMENTAL
CR2.2 Reduce GHG Emissions	EMISSIONS	ENVIRONMENTAL
CR2.5 Maximize Resilience	RESILIENCE VALUE	ECONOMIC

Enhancement of the economic dimension of Envision by linking economic impacts to each credit's strategies where relevant

AGENCY

Capital (initial)cost

Ecosystem services value

O&M cost ECONOMIC IMPACTS Rehabilitation cost Replacement cost **Residual value** Revenues Delay cost Noise cost Restoration cost Resilience value

Travel time value Vehicle cost Fuel cost Fare cost Accident cost Health cost Job creation Liability claim / Penalty cost Economic prosperity **Resilience** value Ecosystem services value The added economic impacts include:

- Costs/benefits for both the agency/owner and the user ۰
- initial and future costs

And aim to reflect the promoted by Envision shift of focus from monetary to total value

NEXT STEPS

THE SUSTAINABILITY LC TOOL AS A DYNAMIC FRAMEWORK

LC SUSTAINABILITY TOOL CONTINUOUS EVOLUTION

The LC Sustainability tool is a dynamic and flexible framework.

The list of strategies and impacts can be expanded to incorporate e.g. innovative strategies as they emerge from active areas of research, or incorporate additional level of detail according to needs.

For example, as part of the 2020-21 ZHP research on climate change:

Assessment of Projects for a. mitigation and adaptation to climate change and b. attractiveness to investments

Prof. Spiro N. Pollalis
Evgenia Chatzistavrou
Angela Kouveli
Eleonora Marinou
Judith Rodriguez
Olga Tzioti

l June 15, 2021

The impact 'emissions' was further disaggregated into:

- Scope 1 emissions
- Scope 2 emissions
- Scope 3 emissions
 For clarification of the GHG emissions involved in each strategy
- A climate-related risk was added and linked to the impact 'emissions', the 'transition risk', as defined by TCFD to highlight less or more exposure to related potential financial impacts (e.g. reputation-related, technology-related, lock-in technology related, change in demand-related).
- **The definition of the impact 'resilience value'** was enhanced, based on TCFD climate-related financial risks & opportunities, and categorized as:
 - Physical asset risk
 - Service continuity risk
 - Resource availability risk (water, materials, land, workforce)
 - Supply chain continuity risk

The development of the tool **highlighted the significance of key credits** and revealed a trend of project teams to not pursuing their achievement.

LD3.3 Conduct A Lifecycle Economic Evaluation

Especially in the case of credits:

CR1.1 Reduce net embodied carbon

CR2.2 Reduce GHG Emissions

What the tool offers

- By linking strategies to detailed economic costs, and impacts like 'embodied carbon' and 'GHG emissions' the tool can assist project teams to identify and list all their project strategies related to these impacts.
- A supplemental guide designated for these credits achievement can be developed through targeted filtering of impacts to complement Envision. Project teams will be provided with a predefined list to build upon and further quantify and monetize these impacts.

THANK YOU

